
International Journal of Solids and Structures 43 (2006) 5085–5099

www.elsevier.com/locate/ijsolstr
Interfacial coplanar cracks in piezoelectric bi-material
systems under pure mechanical impact loading

Z.T. Chen

Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

Received 14 April 2005; received in revised form 4 July 2005
Available online 30 August 2005
Abstract

In this paper, we examine the dynamic behaviour of different piezoelectric bi-material combinations containing two
interfacial cracks subjected to mechanical impact loading. The problem is formulated in terms of integral transforms
techniques and the collocation method to obtain the solution for the resulting singular integral equation in the trans-
formed plane. Laplace inversion was then used to obtain the resulting dynamic stress intensity factors in the physical
plane. Numerical examples are provided for five different types of piezoelectric bi-material systems to illustrate the effect
of the presence of collinear interacting cracks and the different material combinations upon the resulting dynamic stress
intensity factors.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the fracture mechanics of piezoelectric materials plays an important role in the design of
piezoelectric devices. In recent years, a great amount of work has been carried out in this field. However,
in spite of the fact that piezoelectric materials and their composites are mostly being used or considered for
use in situations involving dynamic loading, most of the existing works deal with the quasi-static treatment
of these materials, especially when multiple cracks are involved. This has prompted the undertaking of the
present study.
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.07.017

E-mail address: ztchen@unb.ca

mailto:ztchen@unb.ca


5086 Z.T. Chen / International Journal of Solids and Structures 43 (2006) 5085–5099
A number of researchers have contributed to the static response of interfacial cracks presented in piezo-
electric composites. For example, Suo et al. (1992) discussed the general treatment of an interfacial crack
in an anisotropic piezoelectric composite. They obtained closed form solutions for infinite piezoelectric
materials and bi-materials containing a central crack. A new type of singularity is revealed around the inter-
facial crack tip. By virtue of the principle of analytical continuation and the complex series expansion meth-
od, Zhong and Meguid (1997) investigated the interfacial debonding of a circular inhomogeneity in a
piezoelectric material. Qin and Yu (1997) studied the arbitrarily oriented inplane crack terminating at
the interface of dissimilar piezoelectric materials. As the crack coincided with the interface, the oscillating
singularity was recovered.

Dynamic response of cracked piezoelectric materials under dynamic loads are increasingly studied re-
cently (Chen and Karihaloo, 1999; Chen and Meguid, 2000; Wang and Yu, 2001; Li and Tang, 2003,
for example). Dynamic interactions between multiple cracks in piezoelectric materials have been investi-
gated by a few researchers in the last few years (see, e.g., Kwon et al., 2002; Meguid and Wang, 1998; Chen
and Worswick, 2000; Meguid and Chen, 2001, etc.). However, investigations into the dynamic response of
interacting interface cracks in piezoelectric composites are rarely seen in the literature, particularly when
transient impacting load is involved.

Chen et al. (1998) investigated the moving interface crack problem in piezoelectric bi-materials and ob-
tained a closed form solution, which indicated the effect of the crack velocity upon the dynamic intensities
of stress and electric displacement. Qin and Mai (1999) presented a closed crack tip model for the interface
crack in thermo-piezoelectric materials in order to eliminate the physical difficulty of observing oscillating
singularity at the crack tip. Using the extended Stroh�s formulation and the principle of analytical contin-
uation, Shen and Kuang (1998) solved the interface crack problem in bi-piezothermoelastic media. Narita
and Shindo (1998) investigated the interface crack problem in a layered piezoelectric material under anti-
plane shear loading. The results were obtained in terms of the solution of dual integral equations. Shindo
et al. (1998) analyzed the dynamic bending of a symmetric piezoelectric laminated plate with a through
crack under harmonic wave loading. The resulting dynamic moment intensity factor was obtained in terms
of the solution of the appropriate dual integral equations. As for the multiple-crack problem in piezoelectric
materials, there exist some relevant contributions. Pak and Goloubeva (1996), for example, exploited gen-
eral electro-elastic properties of crack-weakened piezoelectric materials under longitudinal shear loading
with the method of Green functions. By employing integral transform technique and a self-consistent iter-
ative technique, Meguid and Wang (1998) examined the dynamic interaction between two cracks in a pie-
zoelectric medium under incident antiplane shear wave loading. Qin and Mai (1998) analyzed the multiple
cracks in one side of a thermo-electro-elastic bi-material with the aid of Green function. The interaction of
the interface and the cracks upon the stress and electric displacement intensity factors were illustrated by
solving appropriate singular integral equations. More recently, Nishioka et al. (2003) obtained the relation-
ships between the dynamic J integral and the stress and electric displacement intensity factors using the
near-tip analytical solutions for the interfacial crack in piezoelectric bi-materials. Zhou et al. (2005) ex-
plored the dynamic response of two collinear interface cracks in magneto-electro-elastic materials. In their
study, the Schmidt method (Morse and Feshbach, 1958; Yan, 1967, for example) was employed to consider
the steady-state response of two interface collinear cracks under incident elastic shear wave load. Gu et al.
(2002) examined the dynamic transient response of a single interface crack in piezoelectric materials under
electro-mechanical impact load.

In the present work, the transient response of two coplanar cracks along the interface of piezoelectric bi-
materials is studied under antiplane mechanical impact loading. By employing integral transform tech-
niques, the present mixed boundary value problem is reduced to a Cauchy-type singular integral equation
of the first kind. The resulting singular integral equations were solved using the collocation method, devel-
oped by Erdogan and Gupta (1972), to provide the dynamic stress intensity factors (DSIF) in the Laplace
plane. A numerical Laplace transform inversion technique, described by Miller and Guy (1966), is then
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used to obtain the DSIF in the physical plane. In order to illustrate the effect of collinear cracks interaction
and material combinations upon the impact response of cracked piezoelectric bi-materials, numerical exam-
ples are provided for five different combinations commonly used in the design of intelligent structures.
2. Formulation of the problem

Let us consider two coplanar Griffith cracks of the same length lying along the interface of two dissimilar
piezoelectric materials. The cracks are located along the x-axis from ‘‘�b’’ to ‘‘�a’’ and from ‘‘a’’ to ‘‘b’’,
using the rectangular coordinate system (x,y,z) shown in Fig. 1. The piezoelectric bi-material is poled in the
z-direction, which guarantees its transversely isotropic nature. Let us further assume that the bi-material
system is subjected to dynamic impact loading, s0H(t), applied at infinity.

The present problem can be decomposed into two sub-problems. The first describes a uniform antiplane
stress s0H(t) in a crack-free piezoelectric bi-material, while the second takes into account the antiplane stress
�s0H(t) acting on the surfaces of the two coplanar cracks. Sub-problem (b) is of interest to the current study.

In this case, the boundary tractions acting on the crack surfaces are described by
Fig. 1.
sð1Þzy ðx; 0; tÞ ¼ sð2Þzy ðx; 0; tÞ ¼ �s0HðtÞ; a < jxj < b ð1Þ
subject to the following continuity condition along the interface of the piezoelectric bi-material
wð1Þðx; 0; tÞ ¼ wð2Þðx; 0; tÞ
sð1Þzy ðx; 0þ; tÞ ¼ sð2Þzy ðx; 0�; tÞ

)
0 < jxj < a; jxj > b ð2Þ
where sðiÞkz (k = x,y) represent the antiplane stress and w(i) the mechanical displacement. The superscripts ‘‘i’’
(i = 1,2) represents the respective quantities in the upper and lower half spaces and this convention holds
throughout the paper.

The electric boundary conditions of a crack in piezoelectric media had been the topic of many investi-
gations (McMeeking, 1989; Hao and Shen, 1994; Dunn, 1994). Liu and Chen (2002), and Wang and Mai
(2004) compared the permeable and impermeable assumption respectively using simple crack problem.
piezoelectric material I

piezoelectric material II

-b b-a a

x

y
r

θ

A schematic of a piezoelectric bi-material system containing two coplanar interfacial cracks under antiplane impact loading.
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Recently, Yang (2001) and Wang and Zhang (2004) employed the electric field saturation model developed
by Gao et al. (1997) to investigate the mode I fracture behaviour of piezoelectric materials.

For the present study, since no opening displacement exists, the crack faces can therefore be assumed to
be in perfect contact. Accordingly, the electric permeable condition will be enforced. That is, both the elec-
tric potential and the normal electric displacement are assumed to be continuous across the interfacial
cracks, which can be expressed as
/ð1Þðx; 0þ; tÞ ¼ /ð2Þðx; 0; tÞ; jxj <1 ð3Þ
Dð1Þy ðx; 0þ; tÞ ¼ Dð2Þy ðx; 0�; tÞ; jxj <1 ð4Þ
where DðiÞk (k = x,y) represent the electric displacement vector, /(i) the electric potential. The equilibrium
and the Maxwell equations for piezoelectric under antiplane loading can be expressed as follows:
osðiÞxz =oxþ osðiÞyz =oy ¼ qio
2wðiÞ=ot2 ð5Þ

oDðiÞx =oxþ oDðiÞy =oy ¼ 0 ð6Þ
with qi, (i = 1,2) being the mass density of piezoelectric ceramics.
The antiplane constitutive equations for transversely isotropic piezoelectric materials can be expressed by
sðiÞzj ¼ cðiÞ44wðiÞ;j þ eðiÞ15/
ðiÞ
;j ð7Þ

DðiÞj ¼ eðiÞ15wðiÞ;j � eðiÞ11/
ðiÞ
;j ð8Þ
where cðiÞ44, eðiÞ15, and eðiÞ11 are the shear modulus, piezoelectric coefficient and dielectric parameter of the pie-
zoelectric bi-materials, respectively.

Substituting (7) and (8) into (5) and (6), we can obtain the dynamic antiplane governing equations for
piezoelectric materials; as follows (Parton and Kudryavtsev, 1988):
cðiÞ44r2wðiÞ þ eðiÞ15r2/ðiÞ ¼ qio
2wðiÞ=ot2 ð9Þ

eðiÞ15r2wðiÞ � eðiÞ11r2/ðiÞ ¼ 0 ð10Þ

In the above equations, $2 = o2/ox2 + o2/oy2 is the two-dimensional Laplacian operator. It should be noted
that the body force and the free charge are neglected in the present work.

Substituting Eq. (10) into Eq. (9), we can obtain the wave equation for piezoelectric materials, viz.
r2wðiÞ ¼ cðiÞ
�2

2 o2wðiÞ=ot2 ð11Þ

in which
cðiÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lðiÞ=qi

q
ð12Þ
being the antiplane shear wave speed in the piezoelectric materials, with
lðiÞ ¼ cðiÞ44 þ eðiÞ
2

15 =e
ðiÞ
11
3. Derivation of the singular integral equations

Eq. (11) has following solution in the Laplace transform domain with respect to time
wðiÞ�ðx; y; pÞ ¼ 2

p

Z 1

0

Aiðs; pÞ exp½ð�1Þiciy� cosðsxÞds ð13Þ
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where
ciðs; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ p2cðiÞ

�2

2

q
wðiÞ�ðx; y; pÞ ¼

Z 1

0

wðiÞðx; y; tÞ expð�ptÞdt

wðiÞðx; y; tÞ ¼ 1

2pi

Z
Br

wðiÞ�ðx; y; pÞ expðptÞdp

ð14Þ
in which p denotes the Laplace transform parameter, Br stands for the Bromwich path of integration. The
quantities with an asterisk denote the corresponding Laplace transforms. It is worth noting that the con-
dition that the mechanical displacement should be bounded at infinity is incorporated in the derivation of
Eq. (13). Inserting Eq. (13) into Eq. (10) leads to
/ðiÞ�ðx; y; pÞ ¼ eðiÞ15

eðiÞ11

wðiÞ�ðx; y; pÞ þ wðiÞ�ðx; y; pÞ ð15Þ
where
wðiÞ�ðx; y; pÞ ¼
Z 1

0

wðiÞðx; y; tÞ expðptÞdt ¼ 2

p

Z 1

0

Biðs; pÞ exp½ð�1Þisy� cosðsxÞds ð16Þ
Similarly, the condition that the electric potential should be bounded at infinity is incorporated in the der-
ivation of (15). Substituting Eq. (15) into the Laplace transform of Eqs. (7) and (8), it follows that:
sðiÞ�zj ¼ lðiÞw;ðiÞ�j þ eðiÞ15w;
ðiÞ�
j ð17Þ

DðiÞ�j ¼ �eðiÞ11w;
ðiÞ�
j ð18Þ
Substituting (13) and (16) into (17) and (18) results in
sðiÞ�zy ¼ �
2

p
ð�1Þi

Z 1

0

flðiÞciAiðs; pÞ exp½ð�1Þiciy� þ eðiÞ15sBiðs; pÞ exp½ð�1Þisy�g cosðsxÞds ð19Þ

sðiÞ�zx ¼ �
2

p

Z 1

0

flðiÞciAiðs; pÞ exp½ð�1Þiciy� þ eðiÞ15sBiðs; pÞ exp½ð�1Þisy�g sinðsxÞds ð20Þ

DðiÞ�y ¼ � 2

p
ð�1ÞieðiÞ11

Z 1

0

sBiðs; pÞ exp½ð�1Þisy� cosðsxÞds ð21Þ

DðiÞ�x ¼ � 2

p
eðiÞ11

Z 1

0

sBiðs; pÞ exp½ð�1Þisy� sinðsxÞds ð22Þ
The Laplace transform of the boundary conditions yields
sð1Þ�zy ðx; 0; pÞ ¼ sð2Þ�zy ðx; 0; pÞ;

Dð1Þ�y ðx; 0; pÞ ¼ Dð2Þ�y ðx; 0; pÞ;

(
jxj <1 ð23Þ

/ð1Þ�ðx; 0; pÞ ¼ /ð2Þ�ðx; 0; pÞ; jxj <1 ð24Þ

wð1Þ�ðx; 0; pÞ ¼ wð2Þ�ðx; 0; pÞ; 0 < jxj < a; jxj > b ð25Þ

sð1Þ�zy ðx; 0; pÞ ¼ sð2Þ�zy ðx; 0; pÞ ¼ �s0=p; a < jxj < b ð26Þ
Substituting (19), (21), (13), (16) into the boundary conditions (23) and (24), we can obtain the relation
between the four unknowns Ai(s,p) and Bi(s,p):
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eð1Þ11 B1ðs; pÞ ¼ �eð2Þ11 B2ðs; pÞ ð27Þ

� lð1Þc1A1ðs; pÞ � eð1Þ15 sB1ðs; pÞ ¼ lð2Þc2A2ðs; pÞ þ eð2Þ15 sB2ðs; pÞ ð28Þ

eð1Þ15

eð1Þ11

A1ðs; pÞ þ B1ðs; pÞ ¼
eð2Þ15

eð2Þ11

A2ðs; pÞ þ B2ðs; pÞ ð29Þ
From the above relations, it can be realized that the four unknowns Ai(s,p) and Bi(s,p), (i = 1,2) are not
independent of each other. Hence, we can express the four unknowns in terms of one of them, for example,
A2(s,p):
A1ðs; pÞ ¼ a1ðs; pÞA2ðs; pÞ ð30Þ

B2ðs; pÞ ¼ b2ðs; pÞA2ðs; pÞ ð31Þ

B1ðs; pÞ ¼ b1ðs; pÞA2ðs; pÞ ð32Þ
in which
a1ðs; pÞ ¼
eð1Þ11 eð2Þ15

eð2Þ11 eð1Þ15

þ 1þ eð2Þ11

eð1Þ11

 !
eð1Þ11

eð1Þ15

b2ðs; pÞ ð33Þ

b1ðs; pÞ ¼ �
eð2Þ11

eð1Þ11

b2ðs; pÞ ð34Þ

b2ðs; pÞ ¼ lð2Þc2 þ lð1Þc1

eð1Þ11 eð2Þ15

eð2Þ11 eð2Þ15

 !
eð1Þ15 eð2Þ11

eð1Þ11

� eð2Þ15

 !
s� lð1Þc1 eð1Þ11 þ eð2Þ11

� �
eð1Þ15

. i�1
"

ð35Þ
Substituting (19), (13) and (16) into (25) and (26), and accounting for the relations of Eqs. (33)–(35), leads
to the dual integral equation in terms of A2(s,p), as follows:
2

p

Z 1

0

sf ðs; pÞA2ðs; pÞ cosðsxÞds ¼ �s0=ðplð2ÞÞ; a < x < b ð36Þ

2

p

Z 1

0

A2ðs; pÞ cosðsxÞds ¼ 0; 0 < x < a; x > b ð37Þ
where
f ðs; pÞ ¼ c2=sþ eð2Þ15 b2ðs; pÞ=lð2Þ ð38Þ

Let us now introduce a new unknown function g(u,p) along the crack surface, such that
A2ðs; pÞ ¼ s�1

Z b

a
gðu; pÞ sinðsuÞdu ð39Þ
Substituting Eq. (39) into Eqs. (36) and (37), using the corresponding Fourier integral formula (Erdelyi
et al., 1954), we can obtain the Cauchy-type singular integral equation of the first kind for g(u,p), viz.
1

p

Z b

a

�f
u� x

þ kðu; x; pÞ
� �

gðu; pÞdu ¼ �s0 plð2Þ
� �	

1

p

Z b

a
gðu; pÞdu ¼ 0

ð40Þ
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in which the kernel is expressed by
kðu; x; pÞ ¼
�f

uþ x
þ 2

Z 1

0

½f ðs; pÞ � �f � sinðsuÞ cosðsxÞds ð41Þ
with
�f ¼ lim
s!1

f ðs; pÞ ¼ 1þ eð2Þ15 1þ lð1Þeð1Þ11 eð2Þ15

lð2Þeð2Þ11 eð2Þ15

 !
eð1Þ15 eð2Þ11 =e

ð1Þ
11 � eð2Þ15 � lð1Þ eð1Þ11 þ eð2Þ11

� �
=eð1Þ15

h i.
ð42Þ
Using the following transform of variables:
x ¼ bþ a
2
þ b� a

2
r; u ¼ bþ a

2
þ b� a

2
q ð43Þ
the singular integral equation (40) can be recast in the following form:
1

p

Z 1

�1

�f
q� r

þ ksðq; r; pÞ
� �

Gðq; pÞdq ¼ �s0 plð2Þ
� �	

1

p

Z 1

�1

Gðq; pÞdq ¼ 0

ð44Þ
with
Gðq; pÞ ¼ g
bþ a

2
þ b� a

2
q; p


 �

ksðq; r; pÞ ¼
b� a

2
k

bþ a
2
þ b� a

2
q;

bþ a
2
þ b� a

2
r; p


 � ð45Þ
Considering the square-root singularity of the electro-mechanical fields around the tip of an interfacial
crack, we can assume that:
Gðq; pÞ ¼ �s0

lð2Þp
Gsðq; pÞð1� q2Þ�1=2 ð46Þ
Applying the Gauss–Chebyshev formulation (Erdogan and Gupta, 1972) to Eq. (44), we can obtain the fol-
lowing algebraic equation system:
Xn

i¼1

1

n
Gsðqi; pÞ

�f
qi � rj

þ ksðqi; rj; pÞ
� �

¼ 1

Xn

i¼1

1

n
Gsðqi; pÞ ¼ 0

ð47Þ
where
qi ¼ cos
2i� 1

2n
p


 �
; rj ¼ cos

j
n

p


 �
j ¼ 1; 2; . . . ; n� 1 ð48Þ
The antiplane dynamic stress intensity factor of the interfacial crack K3(t) is defined by
Ka
3ðtÞ

Kb
3ðtÞ

� �
¼

lim
x!a�

lim
x!bþ

2
4

3
5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pða� xÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� bÞ

p
" #

s2
zyðx; 0; tÞ ð49Þ
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Then, from Eqs. (19), (39), (49), with s approaching infinity (Fan, 1990), we find the following singular
behaviour at the tip of the interfacial crack:
Table
Mater

PZT-4
BaTiO
PZT 6
ZnO
Ka;b
3 ðtÞ=ðs0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðb� aÞ=2Þ

p
¼ �

�f
2pi

Z
Br

½Gsð�1; pÞ=p� expðptÞdp ð50Þ
Consequently, the antiplane stress field around the tip of the interfacial cracks can be expressed in terms of
the stress intensity factor as being:
szxðr; h; tÞ ¼
K3ðtÞffiffiffiffiffiffiffi

2pr
p sin

h
2

szyðr; h; tÞ ¼
K3ðtÞffiffiffiffiffiffiffi

2pr
p cos

h
2

8>><
>>: ð51Þ
in which (r,h) are the polar coordinates around the crack tips (Fig. 1).
4. Numerical results and discussions

Solving the algebraic equation system (47), and accomplishing the Laplace inversion of (50), the anti-
plane dynamic stress intensity factor (DSIF) can be obtained for different combinations of piezoelectric
bi-materials. The Laplace inversion was carried out using the method of Miller and Guy (1966) (see
1
ial properties of commonly used piezoelectric ceramics (Parton and Kudryavtsev, 1988)

q (·103) kg/m3 e11 (·10�9) F/m c44 (·1010) N/m2 e15, C/m l (·1010) N/m2 c2 (·103) m/s

7.5 6.4634 2.56 12.7 5.055 2.6
3 5.7 9.8722 4.4 11.4 5.716 3.17
5/35 7.825 5.66 3.89 8.387 5.133 2.56

5.68 0.0757 4.247 �0.48 4.551 2.83

1

1.1

1.2

1.3

0.00 0.20 0.40 0.60 0.80 1.00
a/b

K
3/

(τ
0(

π(
b-

a)
/2

)1/
2 )

crack tip a

crack tip b

Fig. 2. Static stress intensity factor of two coplanar interfacial cracks versus a/b under antiplane loading.
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Appendix A for details). In the calculation, the stress intensity factor was normalized as k3ðtÞ=
½s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðb� aÞ=2

p
�.

The following five combinations of piezoelectric bi-materials, commonly used in smart structures, were
selected in our computation:
PZT-4/BaTiO3

0
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2
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c2t/((b-a)/2)

K
3(

t)
/(
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(π

(b
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2)
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10

crack tip a
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e

PZT-4/PZT65/35

0
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PZT-4/ZnO

0

0.5

1
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c2t/((b-a)/2)

K
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(π
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1/
2 )
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BaTiO3/ZnO

0
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1

1.5

2
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c2t/((b-a)/2)

K
3(
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(π
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PZT65/35/ZnO

0
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2
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3(
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(π

(b
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2)
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2 )
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Fig. 3. Dynamic stress intensity factors against normalized time for different piezoelectric bi-materials: (a) PZT-4/BatiO3; (b) PZT-4/
PZT 65/35; (c) PZT-4/ZnO; (d) BatiO3/ZnO; (e) PZT 65/35/ZnO.
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(1) material I (upper): PZT-4, material II (lower): BatiO3;
(2) material I (upper): PZT-4, material II (lower): PZT 65/35;
(3) material I (upper): PZT-4, material II (lower): ZnO;
(4) material I (upper): BatiO3, material II (lower): ZnO;
(5) material I (upper): PZT 65/35, material II (lower): ZnO.
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Fig. 4. Comparison of the dynamic stress intensity factors at the inner and outer tips of interfacial cracks in different piezoelectric bi-
materials: (a) and (b) inner crack tips, and (c) and (d) outer crack tips.
Table 2
The peak value of DSIF and the corresponding normalized time for a/b = 0.1

Bi-materials ka
3ðtÞ

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðb� aÞ=2

p c2t/((b � a)/2) kb
3ðtÞ

s0
ffiffiffi
p
p
ðb� aÞ=2

c2t/((b � a)/2)

(1) 1.530 2.6 1.234 2.6
(2) 1.562 3.2 1.234 2.8
(3) 1.530 2.4 1.243 1.8
(4) 1.526 3.0 1.236 2.6
(5) 1.528 2.4 1.244 2.0

Static SIFs: Ka
3=½s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðb� aÞ=2

p
� ¼ 1:3198, Kb

3=½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðb� aÞ=2

p
� ¼ 1:1465.
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Fig. 5. Comparison of the influence of different material properties: bi-materials have the same values of all other material properties
except: (a) and (b) c44; (c) and (d) e11; (e) and (f) e15; and (g) q.
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The electro-mechanical properties of the above piezoelectric materials are listed in Table 1.
Fig. 2 shows the static SIF versus a/b, with a/b being the ratio of the distance between the inner and the

outer tips of the coplanar interfacial cracks. The figure reveals that the SIFs at both the inner tip a and the
outer tip b increase rapidly as the two cracks tend to coalesce. These interacting effects in the SIF become
very significant as a/b approaches naught. It is found from Fig. 2 that the SIF at the inner tip a is always
greater than that at the outer tip b, and that the difference between these two SIFs increases as a/b de-
creases. It is worth noting that in the static case, the SIF of the coplanar interface cracks is independent
of the materials� properties, which recovers the conclusion for the single interface crack problem of piezo-
electric bi-materials (Chen et al., 1997). As a/b approaches unity, the SIFs at both tips tend to unity. In this
case, the interacting effect of the two cracks is very weak, and, therefore, the resulting SIFs at both tips
approach that of a single interface crack (Chen et al., 1997).

Fig. 3(a)–(e) show the variation of the dynamic SIFs of the interface cracks in the five different types of
piezoelectric bi-materials against the normalized time, c2t/((b � a)/2). In this study, a/b was selected to be
0.1 to ensure that interaction effects exist between these interface cracks. All dynamic stress intensity factors
(DSIFs) in these figures show variations similar to those observed in the coplanar crack problem of homog-
enous elastic media (Itou, 1980) as well as piezoelectric materials (Chen and Meguid, 2000). The DSIF in-
creases rapidly from zero to a peak value well above its corresponding static value, and then oscillates about
it. In all the materials combinations considered, the DSIF gains the peak value at the normalized time
c2t/((b � a)/2) of about 1.21–1.52. To compare the difference amongst the DSIFs of the five piezoelectric
bi-materials, we present the variation of the DSIFs at the inner crack tip a in Fig. 4(a) and (b). These
two figures indicate that the peak value of the DSIF varies in a very small range among the different com-
binations considered, although the normalized time when DSIF attains the peak value differs significantly.
Fig. 4(c) and (d) show the variation of the DSIF at the outer tip b of the interface cracks in the different
piezoelectric bi-materials considered. It is worth pointing out that Fig. 4(c) and (d) show similar dependence
of DSIF upon the material combination, as outlined earlier in Fig. 4(a) and (b). The peak values of DSIFs
and the corresponding normalized time, when DSIFs gain their peak values, are provided in Table 2 for the
case when a/b = 0.1.

Fig. 5 shows the effects of each of the piezoelectric material properties on the DSIF. All other properties
were held constant in the calculations except one as shown in Fig. 5(a) and (b) (c44), Fig. 5(c) and (d) (e11),
Fig. 5(e) and (f) (e15), and Fig. 5(g) (density). Four different values, 1, 2, 5, and 10, of the ratio of the respec-
tive material property of material I to material II, were chosen to examine their effect on the dynamic re-
sponse. It is clearly seen that increase in the ratio of cð1Þ44 =cð2Þ44 induces a monotonic decrease in the predicted
peak value of dynamic stress intensity factor and the corresponding time at which this peak value is
achieved. For example, when the ratio of cð1Þ44 =cð2Þ44 increases from 1 to 10, the predicted peak value of DSIF
decreases from 1.58 at c2t/((b�a)/2) = 3.4, to 1.39 at c2t/((b � a)/2) = 1.2. The ratio of eð1Þ11 =e

ð2Þ
11 induces a

milder influence on the predicted DSIF compared with cð1Þ44 =cð2Þ44 . Although variation in eð1Þ15 =eð2Þ15 or
q(1)/q(2) strongly impacts the predicted DSIF, their effects are somewhat random, and therefore, difficult
to describe, as shown in Fig. 5(e)–(g).
5. Conclusion

In this article, we investigate the dynamic fracture behaviour of two interface cracks in piezoelectric bi-
materials. Integral transform technique is employed to reduce the current initial–boundary-value problem
to the solution of singular integral equation, which is then solved by the aid of a collocation method. The
resulting dynamic stress intensity factors are obtained by performing Laplace inversion. Five kinds of com-
monly used piezoelectric bi-materials are considered in the numerical calculation to illustrate the effect of
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the presence of interacting interfacial cracks and material combinations upon the impact response of
cracked piezoelectric bi-materials. It is revealed that:

(i) the quasi-static SIF of the interfacial cracks in piezoelectric bi-materials is independent of the material
properties of the piezoelectric bi-materials,

(ii) the variation of the DSIF is similar to that in pure elastic solids as well as homogeneous piezoelectric
materials, although both the peak value and the normalized time when DSIF gains its peak value
depends upon the properties of the piezoelectric bi-materials, and

(iii) the DSIF at the inner crack tip is always greater than that at the outer crack tip, indicating that the
coplanar cracks tend to coalesce at first, and then propagate from the outer tips.

(iv) The ratios of elastic modulus and mass density of the two materials greatly affects the predicted
dynamic response of the piezoelectric bi-materials. Other material parameters, such as piezoelectric
and dielectric materials, play secondary roles in the dynamic fracture response of the piezoectric
bi-materials.
Appendix A. Numerical inversion of Laplace transform

According to Miller and Guy (1966), see also (Chen and Sih, 1977), when Laplace�s transform of a func-
tion of time f(t) is f*(p), then it can be evaluated at discrete points given by
p ¼ ðbþ 1þ nÞd; n ¼ 1; 2; . . . ðA:1Þ

Accordingly, we can determine the coefficients Cm from the following set of equations:
df �½ðbþ 1þ nÞd� ¼
Xn

m¼0

Cmn!

ðbþ nþ 1Þðbþ nþ 2Þ � � � ðbþ nþ 1þ mÞðn� mÞ! ðA:2Þ
where d > 0 and b > �1.0. If the coefficients are calculated up to CN�1, an approximation of f(t) can be
found as
f ðtÞ ¼
XN�1

m¼0

CmP ð0;bÞm ½2 expð�dtÞ � 1� ðA:3Þ
where P ð0;bÞm ðxÞ is a Jacobi polynomial and N is the number of terms employed. The parameters b, d and N
are selected such that f(t) can be best described within a particular period of time t. In practice, we can select
b = 0, then the Jacobi polynomial becomes Legendre polynomial (Chen and Sih, 1977).
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